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SUMMARY 

 

Transient stability sets the limit of power transmissibility. Both the Pacific Intertie and the 

authors’ recent research show that damping power injected by a high voltage direct current 

(HVDC) station raises the transient-stability limit. Further advance is blocked because the 

power system is nonlinear from the sin(delta) term in the dynamic equations. In the face of 

nonlinearity, the graphical phase-plane method is used to shed understanding so that damping 

power injection can be applied with confidence. The phase-plane method is easy to apply 

because phase-portraits are obtainable from MATLAB, MATHEMATICA, Wolfram 

MathWorld and other software providers. Because the phase-plane method is not well known, 

the method is presented in tutorial fashion. As example, the incidence of a fault and its 

clearance by circuit breakers are explained by phase-plane portraits representing the pre-fault 

condition, the fault condition and the post fault condition. The example illustrates how phase-

plane portraits can be applied to increase the transient stability limit. 
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I. INTRODUCTION 

A. Transient Stability Limit 

The power transfer capability of a transmission line has constraints which in descending 

order of magnitude are: the thermal limit, the steady-state limit, the transient-stability limit 

and system damping [1]. Increasing the transient stability limit brings power transmissibility 

closer to the thermal limit. For instance, power transmissibility was increased by 20% in the 

Pacific AC Intertie [2] by injecting damping power from a HVDC station. 

B. Transient Stability Test Platform 

Fig. 1 shows the single-line diagram of the radial power system, which is planned for 

transient stability test simulations. The turbine-generator delivers power to the infinite bus 

through transmission Lines 1 and 2. The generator is driven by a speed-regulated turbine. The 

HVDC station is labeled MMC-HVDC. However, it can be a HVDC station of any generation: 

thyristor LCC, PWM HVDC as in [2] or the Modular Multilevel Converter (MMC) in [3].  
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Fig. 1.  Transient Stability Test system consisting of MMC-HVDC station connected in shunt 

to radial transmission line 

C. Transient Stability Test Results 
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Fig. 2.  Transient stability test for Pe=0.7 p.u., kθ=0 unstable (blue), kθ =-0.5 stable (red) 
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In the test, the power from the generator is gradually increased. Initially, the system is 

stable for feedback gain 
θ 0k  for no damping power injection (blue curve) and for non-zero 

values of
θk for damping power injection (red curve). As illustrated in Fig. 2, when the 

transmitted power is increased to
e 0.7P  p.u., the system is unstable without damping (blue) 

but is stabilized (red) when the damping gain is
θ 0.5k   .   

II. DYNAMIC EQUATIONS OF MOTION 

The transmission system of Fig. 1 is modelled by dynamic equations, taken from page 131 

of reference [4]. Using
base base 0m/T VA  , the per unit equations are 
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where
0 is the frequency of the grid,

DK is the damping coefficient in pu torque/pu speed 
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On differentiating (2) with respect to time t and combining it with (1) one has the dynamic 

equation 
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Equation (3) is simplified as 
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III. PHASE-PLANE ANALYSIS 

A. Phase-Plane Formulation 

As there is no analytic solution because of the sin term in (4), the solution is presented 

graphically. In (2) and (4), there are two state variables  and /r d dt   . Dividing (4) by (2) 

yields 

r

r
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The dimension of time t is removed. Instead, the right-hand side of (5) is a gradient 

of r with respect to which on substituting (4) yields 
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In the 2-D graph of the phase plane portraits,
r and are plotted along the y-axis and the 

x-axis respectively.  

At any point  r,  on the graph,
r /d d  is the gradient on of how differential changes 

in d affect differential changes in
rd  . Many software providers such as MATLAB, 

MATHEMATICA, Wolfram MathWorld etc. provide Phase Plane Plotters. In the paper, the 

gradients at sampled points  r,  on the plane are plotted by the pplane program of 

MATLAB. A gradient has no direction. The arrows are attached based on the following 

consideration: For
r 0  above the x-axis, must be increasing with time as required by (2). 

Therefore, the arrows point to the right in the graph above the x-axis. For
r 0  , must be 

decreasing with time and the arrows point to the left. The arrows point to direction only. 

There is no significance in their lengths [5], [6]. 

B. Phase-Plane Portraits 

The phase-plane portraits are presented in Fig. 3 to Fig. 6 for operating conditions 

characterized by coefficients A, B and C of (4), which are shown in Table I. In the following, 

A and B are normalized based on  2

0 / 2V HX . 

TABLE I.  PARAMETERS OF THE PHASE-PLANE PORTRAITS 

Figures A B C Remarks 

3 0 1.0 0 
Limit cycles and unstable regions 

outside separatices. 

4 0 1.0 0.5 
Damping brings system to 

focuses as operating points 

5 0.4 1.0 0.5 Effect of A to shift   

6 0.4 0.1 0.5 
Destabilization during 

transmission line fault 

Example: A=0, B=1.0 and C=0 

The phase plane portrait for the system with parameters A=0 (no turbine torque), B=1.0 

and C=0 (no damping torque) is shown in Fig. 3.  
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Fig. 3.  Phase-plane portrait of r /d d  when A=0, B=1.0 and C=0 

In Fig. 3, the trajectories are elliptical limit cycles with centres around 

2   , =0  and  2  . Because sin sin( 2 )n    , the limit cycles are bounded in 3 

regions: ( 2 )       , ( )     and ( 2 )       .  Because the denominator of 
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(6) is
r , for high values of r the gradients are small. The regions of high r are 

separated from the limit cycles by separatrices (red lines). The regions outside the separatrices 

are unstable because the trajectories do not converge to the limit cycles or focuses. The 

system becomes unstable when a disturbance causes
r to lie outside the separatrice.  

Example: A=0, B=1.0 and 0.5C   
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Fig. 4.  Phase-plane portrait of r /d d  when A=0, B=1.0 and C=0.5 

Positive damping of parameter C=0.5 is introduced and the results are shown in Fig. 4. The 

C term of (6) shifts the gradients of Fig. 3 to the right in the direction of the arrows. The shift 

angle increases with the magnitude of C . The trajectories are no longer limit cycles but 

converge as spirals to the equilibrium points [ 0 0 2 n   , r 0  ] 1,0, 1n    . Regions in 

the unstable region of Fig. 3, which lie outside separatrices, can converge to the equilibrium 

points. Trajectories can cross regions: ( 2 )       , ( )     and ( 2 )       . 

Physically, crossing from one region to the next means gaining or slipping rotation of one 

pole-pair of the generator. 

Example: A=0.4, B=1.0 and C=0.5 
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Fig. 5.  Phase-plane portrait of r /d d  when A=0.4, B=1.0 and C=0.5 

0A  means that turbine torque mT of (1) is considered in the phase-plane portrait. The 

effect of turbine torque is illustrated by setting parameter A=0.4. From (4), the equilibrium 

lies on  sin /arc A B  . Fig. 5 shows the portrait for the case of A=0.4, B=1.0 and C=0.5. 
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The turbine torque shifts the equilibrium torque angle from 0  in Fig. 3 and 4 to 0.41  or 

23
。

. 

Example: A=0.4, B=0.1 and C=0.5  
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Fig. 6.  Phase-plane portrait of
r /d d  when A=0.4, B=0.1 and C=0.5 

As for the system described by Fig. 5, if the voltage drops during a short circuit 

fault, 2

0 / 2B V HX is lowered from B=1.0 to B=0.1, for example. Fig. 6 corresponds to the 

period between the occurrence of the fault and its clearance by circuit breakers. This period is 

unstable because the direction of the arrows shows that there is no convergence. In the fault 

period of Fig. 6, the trajectory leaves [  1 0.41t  ,  r 1 0t  ] at time t1. Modern fast 

circuit breakers enable the trajectory to terminate at time t2 at state-variables [  2t ,  r 2t ] 

within 5 cycles of the supply frequency.  

Phase portraits give static overviews. The transition from initial states 

[  1 0.41t  ,  r 1 0t  ] to the terminal states [  2t ,  r 2t ] requires simultaneous 

numerical integration of (2) and (4) to arrive at t2=t1+100 ms for the 5 cycles of 50 Hz 

between the incidence of the fault and its clearance by circuit breakers. Once the fault is 

cleared, the power is transmitted only along Line 1. The parameter B is changed and detailed 

analyses are given in section IV. 

IV. INTEGRATION PHASE-PLANE PORTRAITS IN TRANSIENT STABILITY TEST 

A. Prior to Fault  

Prior to the transmission line fault, the system has been at rest at state-variables 

[  1 0.41t  ,  r 1 0t  ] at time t1 in Fig. 5.  

B. Transmission Line Fault 

In a 3-phase short-circuit ground fault in Fig. 1, the voltage drops so that B is lowered to 
2

0 / 2 0.1B V HX  , for example. In Fig. 6, the parameters are A=0.4, B=0.1 and C=0.5. 

The system leaves [  1 0.41t  ,  r 1 0t  ] at time t1 along the trajectory in the y > 0 

region. This trajectory is unstable. Because of the development of fast circuit breakers, the 

fault is cleared within five 50 Hz cycles. The final state is [  2t ,  r 2t ] at time t2. In the 

five 50 Hz cycles, the final state [  2t ,  r 2t ] is close to the initial state 

[  1 0.41t  ,  r 1 0t  ]. 
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The simultaneous numerical integration of (2) and (4) yields 

[  2 0.412t  ,  r 2 0.035t  ] as the final state.  

C. Post Fault 

On clearing the fault, the voltage returns to the rated value but power is transmitted along 

Line 1 only in Fig. 1. However, the reactance increases since there is only one transmission 

line, as shown in Fig. 1. The parameters of the phase-plane are changed to A=0.4，B=0.5 and 

C=0.5 for example. Fig. 7 is the phase portrait.  
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Fig. 7.  Phase-plane portrait of r /d d  when A=0.4, B=0.5 and C=0.5 

The trajectory of Fig. 6 brings the system to higher rotor speed, which is measured 

as  r 2t . The initial states of the post fault system are taken from the final state-variables 

[  2 0.412t  ,  r 2 0.035t  ] of Fig. 6. In the example, as  r 2 0.035 1.0t   in Fig. 7, 

there is convergence to steady-state equilibrium. Physically it means that since 

 r 2 0.035t  is close to r 0  , damping power dissipates the excess kinetic energy and 

lowers the rotor speed to  r 3 0.0t  .  

Fig. 5, 6 and 7 are archetype phase-plane portraits for designing nonlinear damping to 

extend the transient stability limit. Design begins with the value of C which the HVDC station 

or FACTS controller can achieve. The objective is to maximize A while respecting B which 

changes with operating conditions. 

V. CONCLUSIONS 

Nonlinearity is a barrier to understanding how the transient stability limit and hence power 

transmissibility can be increased by injecting damping power. The phase plane method, which 

can give a graphical insight into the nature of the nonlinear problem, is applied to to disclose 

the role of nonlinear damping in increasing transient stability limit.  

Phase-plane portrait shows that without damping, the turbine-generator system executes 

bounded limit cycles. If a disturbance causes rotor speed, r , to lie outside the separatrice 

bounds, the system becomes unstable. Damping shifts trajectories to the right in the direction 

of the phase-plane, so that instead of executing limit cycles, the system is damped to converge 

to a steady-state operating point. 

Phase-plane portraits present a comprehensive view that  

(a) when a disturbance causes rotor speed, r , to increase, damping power reduces the 
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perturbation speed until the equilibrium
r 0  is reached.   

(b) equilibrium at arcsin( / )A B  is always reached, in many cases by exceeding 

the ( )     . This involves gaining or slipping one or more pole-pair of the generator.   

Since phase-plane portraits are available from software providers (MATLAB, 

MATHEMATICA, Wolfram MathWorld, etc.) and are computed quickly, they are tools for 

iterative design of 

(a) the extent by which the turbine power A can be increased.  

(b) for the damping power C which is available. 
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