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SUMMARY 
 
Power grids are transitioning to a fully digital data-network-driven paradigm. While digitalization 
provides great benefit in terms of flexible, adaptive, and efficiency-optimized operation of the power-
grid, it introduces substantial new risks of cyberattack on the power grid, including the risk of 
disruptive and damaging mal-operation of control and protection. While IT security best-practices and 
IT security technology such as firewalls, intrusion and malware detection systems, asset management 
software and Security Information and Event Management (SIEM) systems can help to detect and 
prevent such attacks, it is wise to assume that well-resourced mal-actors may still penetrate the control 
network, and either take manual actions or place persistent malware for later triggering. Therefore, an 
additional important aspect of critical infrastructure cybersecurity is real-time situational awareness of 
potential system mal-operation due to digital monitoring and control system misbehavior. A pathway 
to such situational awareness is to understand system vulnerabilities to different cyberattacks, and to 
note the characteristic effects of each category of attack. Hence, it is important for operators of an 
infrastructure system such as digital substations to investigate potential cyberattack scenarios, and 
prioritize detection and mitigation efforts according to different cyberattack impact levels. This paper 
enumerates and describes attack types particular to the OT (control and monitoring system) of the 
substation and distribution segment of the grid, on the assumption that access to the OT networks has 
already been gained by mal-actors or their malware. With research still in progress, this paper 
examines specific cyberattack test case scenarios carried out on an IEC61850 digital substation 
emulated by a designed test platform. The emulated substation and distribution grid has an advanced 
double bus-bar scheme and includes Distribution Energy Resource (DER) assets. Multi-vendor 
protection relays adopt typical protective schemes of a real substation environment, and power flow 
simulation is carried out over process bus (IEC61850-9). This paper first introduces the designed and 
developed real-time test platform for cybersecurity studies. Then, it briefly enumerates plausible 
cyberattack cases to IEC 61850 substation and distribution grid. It then investigates two noteworthy 
and diverse IEC 61850-based cyberattack test cases, i.e., forged breaker failure and reverse polarity of 
DR/DER operation. For these two test cases, data collection, training Machine Learning (ML) 
algorithm, attack sequences, anomaly detection methods and testing the trained detection system on 
attack-contrasting normal operations use cases are discussed. 
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1. Introduction 
In recent years, the IEC 61850 standard has provided power grids with remarkable capabilities such as 
substation IED interoperability. However, with the advent and the expansion of new IEC 61850 
monitoring-and-control features, cyberattacks potentially increased vulnerability levels of the grids. As 
cyberattacks could negatively affect substations and/or distribution grid operational performance, 
studying IEC 61850-based cyberattacks seems essential. IEC 61850 Ethernet–based Generic Object 
Oriented Substation Event (GOOSE) can send indications that subsequently trigger control commands 
from an Intelligent Electronic Device (IED) to a breaker and/or an actuator to change its status and 
send the status changes from one IED to another to co-ordinate power-switching and power-protection 
functions across different feeders of the power distribution substation. In contrast, IEC 61850 Sampled 
Value (SV) is comprised of digitized analog values (e.g., node voltages, branch currents, etc.) that are 
measured in the field. Both GOOSE and SV use a non-protected multicast messaging system to 
perform very fast data transmission, which makes them more vulnerable to cyberattacks. Investigating 
IEC 61850-based cyberattack impacts on the substation and distribution grid can be done by using a 
similar approach to that of this paper; designing and developing a real-time test platform able to 
emulate different types of attack use cases, aiming to provide substation automation systems with 
effective cybersecurity anomaly detection solutions. In the last decade, many efforts have been 
devoted to address substation automation cybersecurity issues. Some tried to evaluate power system 
reliability considering cybersecurity in substations [1]-[4]. Others have focused on improvements in 
security measures [5] and vulnerability assessment [6]. Modeling of substation intrusion discussed in 
[7] and an integrated anomaly detection method proposed in [8]. Moreover, many utilities and research 
institutes aimed to setup cybersecurity test-beds [9]-[16]. The main goal of these testbeds is to measure 
the performance of industrial control systems when equipped with cybersecurity protections in 
accordance with best practices by the existing standards and guidelines. In addition, some reports 
focused on different recent aspects of cybersecurity [17]-[20]. In 2010, NISTIR 7628 [17] presented a 
guideline for smart grid cybersecurity and NESCOR [20] introduced and explained failure scenarios 
threat models and impact analyses according to NIST 1108. From the literature and guidelines, it can 
be concluded that more specific IEC 61850 cyberattack investigation is required, describing 
vulnerable subsystem domains and information/communication-system interfaces, reviewing some of 
the attacks, their potential motivations and several dimensions of distribution grid cyberthreat features, 
attack sequences, and possible detection methods. Hence, this paper will dive deeper into cyberattacks 
on the IEC 61850 substations and distribution grids. While most attack methods and use cases are on 
the IEC 61850 power monitoring, protection, and control system of the substation, a use case attacking 
the smart distribution grid of the near future, in which distribution grid management (DGM) involves 
the control of distributed energy resources (DER) and demand response (DR), is studied as well.  
2. Real-time Test Platform Design and Setup  
The main goal of the test environment is to emulate in real-time the operation of a non-trivial power-
distribution substation and a moderately complex power distribution grid fed by the substation. An 
emulation platform was designed and developed at BCIT to provide real-time testing for substations 
and distribution grid cybersecurity studies. This platform emulates the required power-flow layer of 
the desired SuT (System under Test) using HIL (hardware-in-the-loop) process, while the command & 
control layers are implemented with a power automation system. This platform utilizes IEC-61850 
communication protocol and emulates a fully functional medium voltage substation with various types 
of distribution grid loads and resources such as PV, Battery Energy Storage (BESS), and EV chargers 
using a Real-time Digital Simulator (RTDS). RTDS enables the platform to implement key levels of 
substation topology, i.e., process level, bay level and station level (see Fig. 1). This includes real-field 
substation protection and control IEDs such as protection relays and Merging Units (MU) using IEC 
61850 GOOSE, SV and MMS protocols. The system has a real substation automation controller and 
HMI (from Siemens) that is able to control and monitor the whole system in real-time. As the 
substation topology (shown in Fig. 1) supports different power flow paths, it is flexible enough to 
emulate diverse grid operation scenarios. This topology enables supporting various protection schemes 
and short circuit levels. Moreover, the substation and distribution grid design for real-time emulation 
can provide a cybersecurity test platform with an adequate amount of power-metric data and P&C 
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signal data from normal and normal-rare (e.g. typical fault occurrence and handling / maintenance) 
operating conditions. 
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Fig. 1 Single line diagram of designed substation and distribution network 

For the emulation of substation, distribution grid and the sequence of attack actions, RTDS scripting is 
used. For the attacks that involve testing the rate and pattern of occurrence of events which have 
minutes or hours between them, sped-up simulation time is used. Collection of discrete-event data and 
power-data masurements from the substation and distribution grid into a standardized timeseries data 
archive allows operating data pattern replay of use cases to ML/Attack Detection (ML/AD) 
algorithms, to allow flexible scheduling of trials of substation operation and cyberattack testing vs 
trials of ML training and anomaly detection. Fig. 2 depicts the test platform and anomaly detection 
data flow. A hybrid platform for training and execution of ML/AD algorithms, consisting of Google 
Cloud Artificial Intelligence (AI) platform and a local high-performance GPU-equipped computer 
server is used. Most ML/AD algorithms run on the TensorFlow-2 platform with KERAS, either on the 
local server or Cloud AI. The anomaly detection data processing & analysis chain also includes 
running of several BCIT-developed timeseries-data and event-sequence-learning algorithms, alongside 
standard ML and statistical algorithms running in TensorFlow/KERAS platform.  
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Fig. 2 Test Platform and Anomaly Detection System Data Flow 
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3. IEC 61850 Cyberattack Test Cases 
This section enumerates a range of technically diverse cyberattack cases on a substation and 
distribution-network monitoring and protection-and-control system.  
3. 1. GOOSE-based Attack: Forged Breaker Failure (FBF)  
As a high-impact, simple GOOSE-based attack, a forged breaker failure message can create a severe 
condition, where the substation’s co-ordinated protection scheme assumes that the breaker-in-charge 
cannot trip a fault. The consequence of such an attack can be high as forged breaker failure message 
can trip upstream breaker(s), causing wide outage and potentially damaging equipment. 
3. 2. Command-based Attack: Forged Earth Switch Operating (ESO) Sequence  
In this command-based attack, a forged switch-status message can defeat safety interlocking between 
breakers and earth switch, and can potentially cause a short-circuit. The consequence of such an attack 
can be very high as it can damage equipment and create significant safety hazard for the grid crew. 
Alternatively, forging switch-closed status could prevent power-restoring breaker operations. 
3. 3. Sampled Value-based Attack: Forged Sampled Value (FSV) 
The Sampled Value-based attack is one of the more difficult attacks to implement. This is due to the 
communications principle of publishing sampled values, the short time interval between the messages 
and the lack of repetition mechanism. In this attack, a forged SV stream can create trips and/or outages 
by mal-operation of an IED that subscribes to that stream. 

Forged fault-current SVs – impact amplified by forged-GOOSE defeat of reverse-interlock blocks 
Here, a fault condition is forged, by alteration of a feeder load SV stream, causing an unwarranted 
breaker trip. To amplify impact of a forged fault, forged GOOSE messages can be injected to 
unblock reverse-interlock blocks. This second attack step has the potential to defeat the substation’s 
selective time-grading and reverse-interlock co-ordinated protection scheme and cause cascading 
trips. 
Temporal Cluster of FSV on multiple outgoing feeders (FSTORM): Forged SVs are used at 
different outgoing feeders of substation to simulate a storm condition, during which the likelihood 
of fault occurrence increases. Attackers may change voltage or current values in different outgoing 
points of substation in such a way that the difference between the forged SV attack and a real storm 
condition is difficult to detect.  
Time Stamp Manipulation (TSMAN): here, the attackers publish forged SV streams with altered 
sequence counter numbers for current or voltage signals to mislead protection of a component in 
the system such as transformer. Thus, transformer differential protection can be wrongly activated. 

3. 4 Multiple “Remote” Breaker-Open Commands  
In this case, the attackers gain remote interactive access to the HMI or install MMS malware, and send 
control commands to multiple breakers to create a wide outage and/or black out. This type of attack 
can cause widespread and/or cascading tripping/opening of breakers or de-energizing of substation 
feeder(s). Alternatively or additionally, MMS power measurement or breaker-status data forgery can 
mask the change of state of grid in the HMI, misleading operators about system state.  
3. 5. Attack to DMS: Reversed Polarity DR and DER Operation (DERKILL) 
The main idea of this case is to emulate an attack that reverses the polarity of grid-balancing demand 
response (DR) and distributed energy resource (DER) operation. The substation and distribution-
network are assumed to be managed by a distribution management system (DMS), including demand-
response automation server (DRAS) and the grid-storage supervisory control system (DERMS).  
4. Detailed Cyberattack Test Cases 
This section investigates two significantly important IEC 61850-based cyberattack test cases on 
substation and distribution grids. A use-case specification of a specific application of the attack is 
given based on the emulated grid. Contrasting substation normal-operation use-cases are also 
described, so that an anomaly detection algorithm can train on normal operation patterns, to enable 
recognition of anomalous behaviour. For each attack, a specification of the application of an anomaly 
detection algorithm is specified, and a recipe is provided for testing the AD algorithm on both the 
attack event sequence and on contrasting normal-operations use cases.  
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4. 1. Forged Breaker Failure (FBF) Attack  
4. 1. 1. Training ML on FBF-Contrasting Normal Operations Use Cases 
The system is trained for normal operating sequences, normal fault clearing sequences and normal-rare 
(e.g., grid fault) conditions. Here, the IED of E06 section (Siemens 7SJ85) in Fig. 1, is properly set 
and configured to clear a fault on the feeder with L3. A GOOSE message from E06 7SJ85 relay to trip 
652C breaker during fault, a GOOSE message from E06 7SJ85 relay to trip breaker-652A & 652B, 
and three-phase current measurements of L3 feeder (where the fault occurs) on E06 section are 
collected for the training purpose. GOOSE status-change events and Measurement Threshold 
Exceedance events are used to collect required training data. The anomaly detection algorithm to be 
tested on the FBF case is called SEQT (sequence tree). The SEQT algorithm recognizes novel 
sequences of events, and can be set to tolerate event re-orderings in clusters of almost simultaneous 
events. The algorithm searches for the event sequence in a sequence tree of previously encountered 
time-interval-ignored events, and in another tree which also represents the sequence of events, but 
considers subsequent events in a sequence to be different even if they are the same event-type, but 
occur after a substantially different time-interval than previous occurrences did. Training of SEQT can 
continue through the substation’s operating life, by the mechanism of giving substation operating 
personnel a smartphone app or substation HMI button (green “Sequence OK” button) which allows 
them to confirm as OK (accepted behavior) any novel sequence that SEQT flags during normal 
operations. A Long Short-Term Memory (LSTM) Recurrent Neural Net (RNN) can also be applied to 
the event sequences of the fault-clearing and fault-with-breaker-failure normal-operation cases. We 
plan to compare LSTM to SEQT. LSTM or SEQT are trained on Normal-Normal (fault clearing by 
closest breaker tripping) and Normal-rare (breaker trip attempt with breaker failure and secondary 
protection operation) cases.  
4. 1. 2. FBF Attack Sequence and Data Collection 
A sophisticated attack can be executed by simulating breaker failure protection operation of E06 
7SJ85. As the intruder has changed the stNum and the sqNum in the header of the GOOSE message 
according to the data from the last message published by 7SJ85, it is very tough to prevent the tripping 
of the upstream breaker (752S). The Breaker Failure Scheme has been configured for the double 
busbar scheme as follows within the relays: 
1. On Fault tripping, feedback monitoring time of breaker open status together with current 

supervision will detect failure of the trip coil of the breaker or broken tripping circuit. 
2. 50BF can be configured for multiple re-trips to confirm breaker failure (For our test only a single 

tripping with no re-trip has been configured) 
3. Failure to trip the breaker associated with the fault (on 50/51(N)) will result in 50BF trip signal 

trigger over GOOSE upstream to the next breaker in the active path. 
4. The 50BF trip indication will be sent to the next hierarchical upstream breaker to trip on External 

Trip Function to trip the upstream breaker (tripping time set to instantaneous) 
5. Simulation of the trip coil / tripping circuit failure is realized within the RTDS by interrupting via 

logic the incoming tripping command from the associated relay. 
6. Forging either the 50BF Trip signal or the simulated trip coil / trip circuit failure (increment the 

State number stNum by a large number, set the Sequence number (sqNum) to 0, and change the 
Binary value to RBRF1.OpEx.general = TRUE) results in the upstream breaker (752S) tripping. 

7. Note that the forged 50BF trip signal should be one that is subscribed to by the IED controlling 
the highest order breaker closest to the HV source, for maximum outage impact.  

For data collection, a forged GOOSE message that is similar to 7SJ85 relay message for breaker 
failure activation and three-phase current SV streams of load-3 feeder on E06 section are collected to 
check if the real fault occurred or not. GOOSE status-change events and Measurement Threshold 
Exceedance events are used for data collection.  
4. 1. 3. Testing Trained Detection System on FBF Attack Sequence 
Detection of an event sequence anomaly is the expected result. The FBF attack sequence is being run 
and data collected as described. Batches of data are being fed to a SEQT algorithm process which has 
as its model a sequence tree. Or batches of data are being fed to an LSTM RNN running in 
KERAS+TensorFlow, where the LSTM has a model that has been trained on multiple runs. Hence, it 
is expected that the SEQT algorithm will have output a “novel sequence” and/or “novel sequence 
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timing” status indications after processing the attack event sequence. The RNN is expected to have 
output an anomaly score above its significant anomaly threshold setting. Either of these indications 
could be the basis for a warning/alarm message to operators. 
4. 1. 4. Testing Trained Detection System on FBF-Contrasting Normal Operations Use Cases 
A lack of false-positive anomaly detection is the expected result. The training of SEQT and RNN on 
normal operations use cases, has taken place. The normal operations use cases are re-run and data 
collected. Batches of data are fed to a SEQT algorithm process which has as its model a sequence tree 
as trained on the first run. Or batches of data are being fed to an LSTM RNN running in 
KERAS+TensorFlow, where the LSTM has a model that has been trained on multiple prior runs. 
Hence, it is expected that the SEQT algorithm will have output a “novel sequence=false” and “novel 
sequence timing = false” status indications after processing the normal operations event sequences of 
the final run. The RNN is expected to have output a low, below-threshold anomaly throughout the 
final run. 

4. 2. Reversed Polarity DR and DER Operation (DERKILL) Attack  
Here, a DMS is assumed responsible for initiating both demand-response and charge/discharge energy 
storage commands. The context is a near-future smart power-distribution-network with a significant 
presence of smart loads (e.g. smart EV charging network, smart buildings) and large-capacity grid-
scale or distributed energy storage.  Forging power measurement inputs to the DMS, or hacking into 
the DMS and changing its control logic, can result in incorrect/reverse DER/DR commands being 
issued. For example, during already extreme peak consumption hours, or during low grid frequency 
events, when demand-response should curtail load and DERs should increase generation and storage 
discharge, this attack type could reverse this response, exacerbating the grid imbalance or a local 
overload condition. We describe 3 attack test cases: forged load measurement input to DMS, forged 
grid-frequency measurement input, and inverted DER+DR command output from a hacked DMS. 
4. 2. 1. Training ML on DERKILL-Contrasting Normal Operations Use Cases 
To train ML on the normal behaviour of the DMS DER and DR control system, we run the simulated 
DMS repeatedly during low, medium, and very high (peak) distribution-network demand times, and 
feed to an LSTM RNN (ML) the following data streams: 1) load active power measurements at all 
load feeder meter locations, DER and DR site meters, and a meter at the transformer HV side. To 
exclude the effect of usual load profile variation, derived data features (first and second derivatives, 
pair-wise measurement-point value correlations or subtractions, kirchoff’s law sums and subtractions) 
are fed to the ML instead of raw power measurements. 2) Grid frequency measurements from several 
metered points including HV side of transformer and distribution-network meters such as at the DER 
and DR sites. 3) Optionally, the direct load control setpoints and/or price signals output by the DMS. 
 
Assuming that the DMS is also being employed as a frequency balancing service for the larger (near-
future smart) grid, we also train the ML on extended time periods of simulated beyond-response-
threshold low grid frequency, and simulated beyond-response-threshold high grid frequency, as well 
as periods of nominal grid frequency.  
 
By this training during multiple sped-up-time simulation runs, the LSTM is expected to learn a model 
of the DMS’s characteristic peak-shaving and frequency response, as well as learning the invariants in 
relationship and the typical evolutions in relationship of different power measurements. 
4. 2. 2. DERKILL Attack Sequence and Data Collection 
Test case 1 : intruders modify load-3 input values of the DMS. During a simulated high/extreme load-
peak period in the distribution network, the load measurement SV stream is forged to indicate a very 
low load value. This should cause the DMS to issue DR commands that cancel any curtailment and in 
fact encourage or command high demand from discretionary or time-shiftable loads (we use a 
simulated network of EV chargers). Additionally, it should cause the DMS to change the DER (grid-
scale BESS) command from discharge (grid support) to charge (increase demand). During the attack, 
power measurement SV and monitoring-direction MMS data are collected from measured buses in the 
substation and metered DR and DER locations. DMS DR and DER command signals are also 
collected. The expected result of the attack test is significant increase of already extreme peak load, 
due to maloperated DER and DR. A distribution-feeder protection relay IED may then trip on 
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“Undervoltage”, causing local outage. Test case 2 : Forge beyond-response-threshold high grid-
frequency measurement SVs on the HV side of the substation transformer, during a time when actual 
simulated grid frequency is beyond-response-threshold low. The DMS, relying on that grid frequency 
measurement and (attempting to) act as a grid balancing service, issues inappropriate DER and DR 
commands. Reversed polarity DER and DR activation (BESS charge, EVs max charging power) then 
exacerbates the wide-area grid frequency droop, although this effect is probably not measurable 
locally.  Test case 3 : Alter the DMS simulator to issue reverse-polarity DER/DR commands in 
response to low or high grid frequency. 
4. 2. 3. Testing Trained Detection System on DERKILL Attack Sequence 
For test cases 1 and 2 : Detection of a power measurement integrity anomaly is the expected result. 
The training of the LSTM on DER/DR normal operations use cases, has taken place and the execution 
of the cyberattack is now taking place, with power measurement data collection and command data 
collection. Case 1 or 2 of the DER attack sequence is being run and data collected. Small batches (time 
windows) of the power measurement data and DER/DR command/price data are input successively 
and continuously, for comparison with the trained LSTM models.  
The LSTM should detect unusual patterns of relationship and change of relationship between multiple 
power measurement timeserieses. Invariants in relationship of current/voltage/power/frequency 
measurement features will be violated as one measurement value is tampered with, and the LSTM will 
detect the evolution of these invariants as anomalous. This error signal in the LSTM could be the basis 
for a warning/alarm message to operators. When tested on attack case 3, the LSTM detects an 
unfamiliar (anomalous) association between low transmission-grid frequency and DER 
commands/prices designed to increase power demand further in the grid, and also detects the unusual 
increased power demand by meter measurements.  
4. 2. 4. Testing Trained Detection System on DERKILL-Contrasting Normal Operations Use Cases 
To verify lack of false positive detection by the LSTM, the normal operation use cases (4.2.1) are run 
again, with minor random power measurement differences simulated. Short time-windows (batches) of 
the measurement feature and command signal data are sent to the LSTM for comparison with its 
trained model. No anomaly detection is expected, as the system behaviour is consistent with 
trained/learned behaviour. 
5. Conclusions 
The smart digital substation will bring increased efficiencies, higher situational awareness, quicker 
response times and have a positive impact on operator safety and human error avoidance. With the 
increased connectivity capabilities come clear vulnerabilities from a cybersecurity perspective that 
need to be addressed. Cyber intruders and or malware sophistication increases will continue to have 
high impact on the changing distributed electrical network. A preemptive and proactive Early Warning 
Substation Anomaly Detection System will become a requirement for the future. This research 
advances the development of substation/distribution attack detection, by creating a substation and 
distribution-network HIL test environment, emulating real operational protection-and-control 
cyberattack scenarios, proposing anomaly detection algorithm application, and outlining methodology 
for testing anomaly detection algorithms on a digital substation’s operational data.  
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