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SUMMARY 

 

Combining storages with different characteristics can improve the performance and lifetime 

of electric vehicles. For example, a supercapacitor and a battery together can handle large 

power transfers from acceleration and regenerative braking while protecting the battery from 

degradation. In this paper, we use approximate dynamic programming to design a policy for 

power sharing between dual storage devices. We write the dynamic program as a linear 

program and use basis functions to approximate the optimal value function. Numerical results 

show that the resulting suboptimal policy can approximate the optimal policy with low error 

given a sufficient number of basis functions.  
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I. Introduction 

 

Battery life is an important consideration in electric vehicle (EV) operation. An aging battery 

experiences a drop in energy capacity [1], which reduces the maximum distance that can be travelled 

on a single charge. In vehicle-to-grid applications, it also reduces the useful service that can be 

provided by the battery [2], as a battery of decreased capacity is able to store less energy. Given that 

batteries are expensive components, there is a significant financial cost of degradation which must be 

minimized. 

Combining storages with different characteristics can improve the performance and lifetime of 

electric vehicles. The battery degrades if operated with large energy transfers, whereas a 

supercapacitor has a high power density but low energy capacity [3,4]. This means that a 

supercapacitor and a battery together can handle large power transfers from acceleration and 

regenerative braking while protecting the battery from degradation [4]. Such a system is called a 

hybrid energy storage system (HESS). 

Many previous works have approached the problem of controlling the HESS — that is to say, 

determining energy discharges from the battery and supercapacitor to satisfy a sequence of vehicle 

energy demands while minimizing abovementioned costs. For example, [3,7] present heuristic rule-

based approaches for limiting battery degradation that do not use demand forecasting to account for 

long-term costs, while [5,6] do forecast but solve the optimization problems using suboptimal greedy 

and MPC techniques. For optimality, dynamic programming (DP) has previously been applied in this 

context to determine a policy, i.e. a state feedback control function. References [8] and [9], for 

instance, have both solved the dual-storage problem via infinite horizon DP, but without addressing 

the curse of dimensionality inherent to DP. 

. Our approach differs from these papers because we allow for flexibly approximating the 

optimal policy and solve the problem offline, which resolves the issue of computation time. We first 

model the problem as inventory control with two storages and formulate it as an infinite horizon DP. 

We then solve it using linear programming (see, e.g., [10, pg. 51]) to make use of fast solution 

techniques for linear programs. Finally, we approximate the solution to the linear program using the 

basis function technique given in [11], after generating basis functions for the approximation using 

standard techniques such as in [12]. 

In this paper, we physically model the HESS in Section II and pose the infinite horizon 

problem in Section III. In Section IV, we describe the basis functions we use to approximate the value 

function. Finally, in Section V, we show numerical results for a vehicle with a battery and a 

supercapacitor. 

 

II. Model 

 

In this section, we model the two-storage device optimization problem. Let 𝐸ℎ(𝑡) and 𝑈ℎ(𝑡) denote 

the energy stored in and energy transferred from device ℎ at time instant 𝑡, respectively. Here ℎ = 1 

refers to the battery and ℎ = 2 refers to the supercapacitor. We define 𝑈ℎ(𝑡) to be positive when the 

device is discharged and negative when the device is charged. Furthermore, let 𝐿(𝑡) be the energy 

demand imposed on the system. We then define the state to be 𝑥(𝑡) = [𝐸1(𝑡), 𝐸2(𝑡), 𝐿(𝑡)]𝑇. 

In this problem, the HESS must be controlled to satisfy the known demand at all times. This 

imposes the constraint 𝑈1(𝑡) + 𝑈2(𝑡) = 𝐿(𝑡). We define the control to be 𝑢(𝑡) = 𝑈1(𝑡); 𝑈2(𝑡) is not 

part of the control because it is a dependent variable through equality constraint. 

Let 𝑃ℎ(𝑡) be the power transferred from device ℎ when positive and Δ𝑡 be the discrete time 

step. Then, allowing for regenerative braking, the state equation for the battery is: 

𝐸1(𝑡 + 1) = 𝛽1
loss𝐸1(𝑡) − 𝛼1

𝐶(𝑈1(𝑡))min(0, 𝑈1(𝑡)) −
1

𝛼1
𝐷(𝑈1(𝑡))

max(𝑈1(𝑡),0)     (1) 

Likewise, the state equation for the supercapacitor is: 

𝐸2(𝑡 + 1) = 𝛽2
loss𝐸2(𝑡) − 𝛼2

𝐶(𝑈2(𝑡))min(0, 𝑈2(𝑡)) −
1

𝛼2
𝐷(𝑈2(𝑡))

max(𝑈2(𝑡),0)     (2) 

Here, 𝛼ℎ
𝐶(𝑈ℎ(𝑡)) and 𝛼ℎ

𝐷(𝑈ℎ(𝑡)) respectively denote the charging and discharging efficiencies of 

device ℎ. These depend on the energy transfer 𝑈ℎ(𝑡) = 𝑃ℎ(𝑡) ÷ Δ𝑡 as described in [21], since there is 



  3 

 

more loss for high power transfer. 𝛽ℎ
loss is furthermore the leakage of device ℎ. We write Eq. (1) and 

(2) more concisely as 𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)), where 𝑤(𝑡) is the demand at the next period, a 

bounded random variable. 

In this model, the energy in storage device ℎ is bounded in the range 𝐸ℎ
min ≤ 𝐸ℎ(𝑡) ≤ 𝐸ℎ

max. 

We discretize this range into 𝑁ℎ energy levels for the device ℎ, and define 𝑁 = 𝑁1𝑁2. The energy 

transfers are constrained to the ranges −𝐶ℎ
max ≤ 𝑈ℎ(𝑡) ≤ 𝐷ℎ

max, where 𝐶ℎ
max and 𝐷ℎ

maxare the upper 

bounds on the charging and discharging rates, respectively. They are also discretized, as explained 

below after (2). 

There are three relevant costs in this model. The first is the loss due to inefficient energy 

exchanges between devices, which is the sum of the energy exchanges weighted by their 

inefficiencies: 

∑ (
1

𝛼ℎ
𝐷 − 1)

max(𝑈ℎ(𝑡),0)

𝐸ℎ
max

2

ℎ=1

− ∑(1 − 𝛼ℎ
𝐶)

min(0, 𝑈ℎ(𝑡))

𝐸ℎ
max

2

ℎ=1

 

The second is that of high battery state of energy (SoE) [13, pg. 2615] and low supercapacitor SoE 

[14], where SoE is the ratio 𝐸ℎ(𝑡) ÷ 𝐸ℎ
max. It is given by 

𝜈1 (
𝐸1(𝑡)

𝐸1
max)

2

+ 𝜈2 (1 −
𝐸2(𝑡)

𝐸2
max)

2

 

where 𝜈1 and 𝜈2 are positive weights for the battery SoE and supercapacitor SoE costs, respectively. 

The final cost is that for large energy transfers from the battery, given by 

(1 −
𝐸1(𝑡)

𝐸1
𝑚𝑎𝑥)

2

[𝐾1 (
max(𝑈1(𝑡), 0)

𝐸1
max )

2

+ 𝐾2 (
min(0, 𝑈1(𝑡))

𝐸1
max )

2

]   

Here 𝐾1 and 𝐾2 are, respectively, positive weights for the battery discharging and charging. This cost 

penalizes larger power transfers, which cause greater battery degradation [6], but only at low battery 

SoE. 
We define the stage cost of the optimization problem, 𝑔(𝑥(𝑡), 𝑢(𝑡)), to be the sum of the 

above three cost expressions. We then collect this cost function and the above constraints in the 

following optimization problem: 

min 𝔼 [∑ 𝑔(𝐸1(𝑡), 𝐸2(𝑡), 𝐿(𝑡), 𝑈1(𝑡), 𝑈2(𝑡))

𝑇−1

𝑡=0

]     (2) 

 

subject to 

 

𝐸ℎ
min ≤ 𝐸ℎ(𝑡) ≤ 𝐸ℎ

max, ℎ = 1,2                                                                               (3) 
−𝐶ℎ

max ≤ 𝑈ℎ(𝑡) ≤ 𝐷ℎ
max, ℎ = 1,2                                                                          (4) 

𝑈1(𝑡) + 𝑈2(𝑡) = 𝐿(𝑡)                                                                                                (5) 

𝐸ℎ(𝑡 + 1) = 𝛽ℎ
loss𝐸ℎ(𝑡) − 𝛼ℎ

𝐶min(0, 𝑈ℎ(𝑡)) −
1

𝛼ℎ
𝐷 max(𝑈ℎ(𝑡), 0), ℎ = 1,2 (6) 

 

Note that the energy balance equality constraint (5) can be substituted into the objective and 

the charging inequality constraints, which reduces the decision vector to 𝑢(𝑡) = 𝑈1(𝑡). The range of 

the energies that may be transferred by each device ℎ at time 𝑡, −𝐶ℎ
max ≤ 𝑈ℎ(𝑡) ≤ 𝐷ℎ

max, is 

discretized into 𝜌ℎ levels. This means that the number of possible values of 𝑢(𝑡) is 𝜌 = 𝜌1𝜌2. 

Let Ω𝑡 be the set of state-control pairs at time 𝑡 that satisfy constraints (3) – (6). The optimal 

objective value of (2) is the optimal value function 

𝐽0(𝑥(0)) = min 𝔼 [∑ 𝑔(𝑥(𝑡), 𝑢(𝑡))

𝑇−1

𝑡=0

]     (7) 

The optimization in (7) may then be written as the DP: 

𝐽𝑡(𝑥(𝑡)) = min
𝑢(𝑡)

 𝑔(𝑥(𝑡), 𝑢(𝑡)) + 𝔼 [𝐽𝑡+1(𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)))] 
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starting from 𝐽𝑇(𝑥(𝑇)) = 0. This is subject to constraints (3) – (6), which can be expressed as 

[𝑥(𝑡), 𝑢(𝑡)]𝑇 ∈ Ω𝑡 . Here 𝑈2(𝑡) = 𝐿(𝑡) − 𝑈1(𝑡), using the energy balance constraint. 

In this model, 𝐿(𝑡) is a random quantity which is observed at time 𝑡 before the control 𝑢(𝑡) is 

applied because the controller must have full knowledge of the demand. It evolves according to  

𝐿(𝑡 + 1) = 𝑤(𝑡), where 𝑤(𝑡) is generated by a random process. Note that 𝑤(𝑡) depends on the 

energy in the subsequent state, 𝐸1(𝑡 + 1) and 𝐸2(𝑡 + 1). This is because the demand at any iteration 

cannot exceed the total stored energy at that iteration.  

    We incorporate regenerative braking in our model by allowing 𝐿(𝑡) to take on negative 

values. Let 𝐿min = −min(𝐸1
max + 𝐸2

max, 𝐶1
max + 𝐶2

max) be the minimum demand and 𝐿max =
min(𝐸1

max + 𝐸2
max, 𝐷1

max + 𝐷2
max) be the maximum demand. Then the random demand is bounded to 

the range 𝐿min ≤ 𝐿(𝑡) ≤ 𝐿max. It is also discretized into 𝑀 levels. 

To express the problem as a linear program, we define four sets. Let 𝑊 be the set of random 

demands, indexed by 𝑘 ∈ {1, . . . , 𝑀}. Let Y be the set of points [𝐸1, 𝐸2]𝑇, indexed by 𝜏 ∈ {1, . . . , 𝑁}. 

Let 𝑈 be the set of controls, indexed by 𝑝 ∈ {1, . . . , 𝜌}. Finally, let 𝑈 be the set of values the 

discretized state, 𝑥(𝑡), can take. By the above definition, 𝑋 = 𝑌 × 𝑊, so we can index 𝑋 by 𝑖 ∈
{1, . . . , 𝑁𝑀}. We use subscripts to index the elements each set, e.g., 𝑥𝑖 is the 𝑖th element in set 𝑋. 

We hereon omit time indices because we will solve an infinite horizon approximation. Let 𝑥𝑖 

be the current state and 𝑓(𝑥𝑖, 𝑢𝑝, 𝑤𝑘) be the next state. As the state evolves with each iteration of the 

DP, the subsequent state may not lie in 𝑋. We use weighted interpolation to determine the value 

function at the state 𝑓(𝑥𝑖 , 𝑢𝑝, 𝑤𝑘) ∉ 𝑋. If 𝑥𝑗 is any state in 𝑋 where 𝑗 ∈ {1, . . . , 𝑁𝑀}, the weight of 

𝐽𝑡+1(𝑥𝑗) that contributes to 𝐽𝑡+1(𝑓(𝑥𝑖, 𝑢𝑝, 𝑤𝑘) ) is defined as 𝑞𝑘,𝑝,𝑖,𝑗. We note that no interpolation is 

needed for the demand, 𝐿, while solving the optimization problem offline because the values are 

sampled from the set 𝑊, though this is not the case when simulating online. Hence, we use bilinear 

interpolation to determine the weights 𝑞𝑘,𝑝,𝑖,𝑗, as described in [15, pg. 319] and elsewhere. The 

weights satisfy ∑ 𝑞𝑘,𝑝,𝑖,𝑗

𝑀𝑁

𝑗=1
= 1 and 0 ≤ 𝑞𝑘,𝑝,𝑖,𝑗 ≤ 1. 

 

We express our model as a Markov chain to enable a linear programming formulation. Let 

𝑃(𝑓(𝑥𝑖 , 𝑢𝑝, 𝑤𝑘) ∣ 𝑥𝑖, 𝑢𝑝) be the probability of moving from 𝑥𝑖 ∈ 𝑋 to 𝑓(𝑥𝑖, 𝑢𝑝, 𝑤𝑘). The only random 

variable in 𝑓(𝑥𝑖 , 𝑢𝑝, 𝑤𝑘)  is 𝑤𝑘 ∈ 𝑊, so we may express this in terms of the probability of 𝑤𝑘, which 

is 𝑃(𝑤𝑘|𝑥𝑖, 𝑢𝑝). As shown in [16], we can consolidate these probabilities and the weights into a single 

transition probability matrix, 𝑃𝑝, which depends on control 𝑢𝑝. The entry (𝑖, 𝑗) of this matrix is: 

𝑝𝑖,𝑗(𝑢𝑝) = ∑ 𝑃(𝑤𝑘|𝑥𝑖, 𝑢𝑝)𝑞𝑘,𝑝,𝑖,𝑗

𝑀

𝑘

 

 

III. Infinite Horizon Approximation 

 

The length of each time period is very small relative to the total driving time. For example, 

each period might represent a second. If the total driving time is an hour, this means 3600 periods. 

This motivates the use of an infinite horizon approximation. 

The infinite horizon DP is: 

𝐽(𝑥) = min
𝑢

𝑔(𝑥, 𝑢) + 𝛼𝔼
𝑤

 [𝐽(𝑓(𝑥, 𝑢, 𝑤))]     (8) 

subject to (𝑥, 𝑢) ∈ Ω. Here 𝛼 is a real-valued discount factor such that 0 < 𝛼 < 1. Using this 

approximation, in the following sections we formulate an LP equivalent to this DP and use its solution 

to obtain the optimal policy. As a reminder, in the context of the hybrid storage problem, 𝑥 =
[𝐸1, 𝐸2, 𝐿]𝑇 and 𝑢 = 𝑈1. 

 

III.A. Linear Programming Formulation 
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We can re-formulate the DP in (8) as a linear program (LP) [10]. This allows us to make use 

of faster solution techniques for linear programs, such as the simplex method, and also to apply 

approximation. 

Let 𝜆 ∈ ℝ𝑀𝑁 be a vector of the value function at each value in 𝑋, and let 𝑔 be a vector of the 

stage cost for each state-control pair. Then, the problem can be expressed as: 

max
𝜆

 1𝑇𝜆     𝑠. 𝑡.     (𝜄 − 𝛼𝑃)𝜆 ≤ 𝑔     (9) 

Here, 𝜄 = [𝐼, . . . , 𝐼]𝑇 is a matrix consisting of 𝜌 copies of the identity matrix and 𝑃 =

[(𝑃1)𝑇 , . . . , (𝑃𝜌)𝑇]𝑇. 

 

III.B. Optimal Policy 

 

The optimal policy may be constructed directly from the solution of the LP in (9) [10], which 

is the optimal value function. For each state 𝑥𝑖 ∈ 𝑋, it is given by: 

𝑢∗(𝑥𝑖) = min
𝑢𝑝∈𝑈

 𝑔(𝑥𝑖 , 𝑢𝑝) + 𝛼 ∑  

𝑀𝑁

𝑗=1

∑ 𝑃(𝑤𝑘|𝑥𝑖, 𝑢𝑝)𝑞𝑘,𝑝,𝑖,𝑗𝜆𝑗

𝑀

𝑘=1

 

Here, we use the notation 𝜆𝑗 to refer to the element in the vector 𝜆 which corresponds to value function 

evaluated at the state 𝑥𝑗 ∈ 𝑋.  

For each state 𝑥 ∉ 𝑋, we use interpolation to implement the suboptimal policy, which is: 

𝑢(𝑥) = ∑ 𝑞𝑗(𝑥)𝑢∗(𝑥𝑗)

𝑀𝑁

𝑗=1

 

Here, we use the notation 𝑞𝑗(𝑥) to refer to the weight of 𝑢∗(𝑥𝑗) that contributes to 𝑢(𝑥), since the state 

𝑥 ∉ 𝑋. 

We sample the demand, 𝐿, from a continuous probability distribution when implementing the 

suboptimal policy online, as this allows us to simulate a driving cycle even with coarse discretization 

of demands when solving the LP. This means the above interpolation must be applied to determine 

𝑢(𝑥) additionally in the case when 𝐿 ∉ 𝑊, not just the case when [𝐸1, 𝐸2]𝑇 ∉ 𝑌. As a result, in this 

case the weights 𝑞𝑗(𝑥) are obtained from trilinear interpolation, unlike 𝑞𝑘,𝑝,𝑖,𝑗. 

 

IV. Approximate Solution of LP 

 

Unfortunately, the state space is too large to use a fine discretization. To improve tractability, 

we approximate the value function with basis functions using the methodology of [11]. 

The approximate value function has the form Φ𝑟, where Φ ∈ ℝ𝑀𝑁×𝑅 is termed the design 

matrix and 𝑟 ∈ ℝ𝑅 is a vector of weights. By choosing 𝑅 to be less than 𝑀𝑁, we reduce the size of the 

linear program. The 𝑞th column vector of Φ is a basis function denoted by 𝜙𝑞. In this section, we 

discuss methods to generate basis functions for the two-storage problem. 

We give all basis functions equal weighting as no procedure exists for optimally determining 

the weights [11]. This leads to the following approximation, which is also an LP: 

max
𝑟

  1𝑇Φ𝑟      s. t.      (𝜄 − 𝛼𝑃)Φ𝑟 ≤ 𝑔 

We use a combination of two types of basis functions: monomials, and vectors based on 

heuristic state aggregation. We describe these in the following two subsections. 

 

IV. A. Monomials 

 

We first use monomial basis functions [17]. Let 𝑖 be the index of state 𝑥𝑖 and 𝑗 be the column 

index for entry (𝑖, 𝑗). Let Φ
~

 be the submatrix of Φ with columns corresponding to monomial basis 

vectors. Φ
~

 has the form: 

  

Φ
~

𝑖,𝑗 = 𝑥𝑖
𝑗−1
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The exponent notation is used here to indicate a monomial of degree 𝑗 − 1 in the state variables 𝐸1, 𝐸2, 
and 𝐿. 

 

IV. B. State Aggregation 

 

We use the state aggregation technique of [18] to reduce the number of decision variables. 

This is to say that we approximate the optimal value function by a piecewise constant function, where 

each interval of the domain corresponds to an aggregation. 

Appropriate state aggregations depend on the specific problem. However, in general, each 

aggregation is defined to have approximately the same value of 𝜙𝑗(𝑥𝑖)𝑟𝑗 for all states 𝑥𝑖 in that 

aggregation, where 𝑗 is the index of the aggregation (basis function). Let Φ
^

 be the submatrix of Φ with 

columns corresponding to state aggregation basis vectors. Φ
^

 has the form:  

Φ
^

𝑖,𝑗 = {
1     if     𝑖 ∈ 𝐻𝑗

0     if     𝑖 ∉ 𝐻𝑗
 

where 𝐻𝑗 is the set of indices 𝑖 in aggregation 𝑗. The aggregations are disjoint and the union contains 

all indices 𝑖 = 1, … , 𝑁𝑀. The aggregations 𝐻𝑗 are determined by running value iteration a small 

number of times, and grouping similar entries of the value function. 

 

V. Numerical Example 

 

We tested our approach in simulation on a typical electric vehicle with a battery and a 

supercapacitor described in [5]. We used 𝑅 = 6mΩ for the battery and 𝑃2
max = 274.2kW for the 

supercapacitor to calculate the charging and discharging efficiencies for each device, based on the 

datasheets of the devices in [5]. We also used a as leakage factor of 𝛽ℎ
loss = 1 for both, based 

approximately on the same. In this paper, the approximate linear program was modelled in CVX [19] 

and solved using Gurobi [20] for various demand sequences. All other parameters were kept constant, 

which included the discount factor 𝛼 = 0.99, weighting factors 𝐾1 = 𝐾2 = 1000, and weights 𝜈1 =
100 and 𝜈2 = 1 for the SoE penalties on the battery and supercapacitor respectively. Finally, to 

perform the approximation, we used 𝑅 = 496 basis functions composed of 210 state aggregations and 

monomials up to order 10. 

We sized the energy storage system as per [5]. The energy capacities of the battery and the 

supercapacitor are approximately 𝐸1
max =33.7kWh and 𝐸2

max =160Wh, respectively. The power 

densities of the Li-Ion batteries and supercapacitors in [5] are 0.43 kW/kg and 6.7 kW/kg, so for the 

given sizes, the maximum energy discharge ratings were approximately 𝐷1
max =4.5Wh for the battery 

and 𝐷2
max =7.5Wh for the supercapacitor. This rating assumes a time step of Δ𝑡 =0.1s, which we 

determined to be a reasonable time for energy transfers. Given that the input and output power ratings 

of the supercapacitor are symmetric [14], we chose to set 𝐶2
max  = 𝐷2

max. However, the input power 

rating of a battery is generally lower than its output rating [21, pg. 14]. Based on the datasheet for the 

battery used in [5], the battery's rated charging power is 48 W/kg, so we set 𝐶1
max =0.50Wh. 

We first solved the approximate linear program offline to determine the optimal policy, where 

the probabilities 𝑝𝑖,𝑗(𝑢𝑝) of discrete demands in set 𝑊 are distributed according to an artificial Beta 

distribution parameterized by 𝛽. We then applied demand sequences where the continuous random 

demands were sampled from the same distributions to determine how the battery and supercapacitor 

should be optimally controlled under different conditions. In [5], the storages were sized for a 

maximum power demand giving a travel time of 9600s. Accordingly, we simulated starting from 

initial energy state of 𝐸1 = 𝐸1
max and 𝐸2 = 𝐸2

max for the same duration. We tested the optimal policy 

online when the demands are generated by two different beta distributions: one parameterized by 𝛽 =
1, and the other by 𝛽 = 10. We also tested both without regenerative braking (i.e., 𝐿min = 0) and with 

regenerative braking (i.e., 𝐿min = −min(𝐸1
max + 𝐸2

max, 𝐶1
max + 𝐶2

max) ) to compare. 

The simulation for the first case (𝛽 = 1 and no regenerative braking) is illustrated in Figure 1. 
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Figure 1: Testing optimal policy online with a sequence generated by a distribution with β=1 and no regenerative braking. 

We see that the battery will tend to supply the majority of the energy both for very low demands and 

when the supercapacitor is depleted. We also observe that the supercapacitor often satisfies larger 

demands of short duration, such as during the interval of 130s to 140s in Figure 1. This result is 

expected because there is a relatively high cost of large discharges from the battery.  

When there is no demand, the battery sometimes recharges the supercapacitor. This also 

confirms that the optimal policy is not myopic, since a trade-off is made between instantaneous 

transfer loss and satisfying fluctuating demands at a later time by pre-emptively charging the 

supercapacitor. Were it not for the benefits of the latter, there would be no reason for such energy 

exchanges. However, because the supercapacitor energy capacity is quite low, the demand must drop 

quite low until it is optimal for this to occur. 

Additionally, we observed that by reducing 𝐾1 and 𝐾2 to 1, there is less cost for charging and 

discharging the battery. One can see this in Figure 2, which shows the response when the demand 

sequence is generated by a distribution with 𝛽 = 10 and there is no regenerative braking. 

 
Figure 2: Testing optimal policy online with a sequence generated by a distribution with β=10. No regenerative braking, and 

lower battery charging and discharging cost (K1=K2=1). 

We see that decreasing the cost of discharging from the battery results in the optimal policy being to 

not recharge the supercapacitor, even when there is no demand. This is due to the cost of energy 

transfer losses being on the order of the battery discharge cost, unlike in the previous test. The result 

confirms our expectations. 

Finally, we tested the case with regenerative braking to compare to the above policies. Figure 

3 shows the optimal response to a demand that is generated by a distribution with 𝛽 = 1. 
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Figure 3: Testing optimal policy online with a sequence generated by a distribution with β=1 and regenerative braking 

present. 

We see that the optimal policy in this case is to charge and discharge the supercapacitor sooner than 

the battery to satisfy the demand. This is comparable to the case when there is no regenerative braking, 

as in Figure 1. One difference is that the battery charges the supercapacitor less when there is low 

demand, unlike in Figure 1. This enables the supercapacitor to absorb future energy from regenerative 

braking. 

In addition to testing the optimal policy, we also tested the value function approximation. We 

quantified the approximation error for problems of small size. Figure 4, for example, illustrates the 

trade-off made between the approximation error and the number of iterations in solving the 

approximate LP, where the latter depends on the number of basis functions.  

 
Figure 4: Variation in approximation error and solution time with number of basis functions added. Test size: N1=6, N2=5, 

M=16. 

This shows that the approximation error can indeed be made arbitrarily small by flexibly adding more 

basis functions. 

 

VI. Conclusion 

 

This paper has developed and optimized a model for energy transfers from two storage devices 

to satisfy a random demand. The Markov decision process was formulated as a linear program and 

approximated using basis functions. The problem was then solved offline and tested online for the 

numerical example of an EV with hybrid energy storage and regenerative braking. The final results 

confirm that the approximate LP does allow for determining a suboptimal but high-performance 

policy. Further work remains to be done to size the storages in this model. 
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