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EXECUTIVE SUMMARY 
 
Dynamic thermal models can be used to monitor transformer cooling system condition by comparing 
estimated oil temperature with the top-oil measurement commonly available for all units. When 
cooling system performance deteriorates, the measured top-oil temperature exceeds the one estimated 
by the model. Several physical models for transformer dynamic thermal modelling have been 
proposed in the literature, with various levels of accuracy depending on their complexity. 
 
A neural network based model has been applied to represent the dynamic thermal behavior of 
transformers in service on Hydro-Québec’s transmission system. To cover Canadian winter and 
summer conditions, at least one year of measurements from transformers in service have been used to 
train the model.  When using physical models, it is important to consider the various stages of cooling, 
e.g., the number of fans in operation in air-forced cooling mode. Neural networks trained from 
historical measurements can inherently consider this aspect.  
 
This paper presents the performance and limitations of this approach. The models were trained using 
measurements from 54 units, with natural and forced oil flow in the windings and the cooling system 
and with nominal ratings ranging from 120 kV to 315 kV and 22.5 MVA to 450 MVA. To 
demonstrate the capability of the selected neural networks to detect a faulty condition, the cooling 
stage of a transformer was manually operated to create a temperature change that would be captured 
by the monitoring system. The next stage of development will include on-line training of the networks 
to be initiated automatically as soon as enough data is available. 
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1. INTRODUCTION 
 
Hydro-Québec’s power transformer fleet is composed of more than 2 300 transformers (generator 
step-up, transmission and transformers feeding the distribution network) with a total installed capacity 
upwards of 200 000 MVA. An integrated transformer monitoring strategy has been implemented, with 
sensors installed on transformers to monitor selected parameters that can provide useful condition 
assessment information. Transforming measurement data into meaningful condition assessment 
information requires the use of data analytics that are based on the knowledge of the physical failure 
modes of the main components (active part, cooling system, bushings and tap changer). Every element 
of the strategy, from the sensors to the corrective maintenance actions (shown in Figure 1), are 
essential to capture the benefits of the strategy. At the time of preparing this paper, 293 transformers 
(with at least one connected sensor) are available via the centralized monitoring system presented in 
Figure 1.  This number will grow in the coming years when more substations will be connected to the 
data acquisition system.  This paper focuses on analysis of the data to assess cooling system 
performance. 
 

 
Figure 1: Integrated strategy for transformer monitoring 

Temperature monitoring devices are used to control the cooling system and to trigger high temperature 
alarms.  The use of modern digital devices allows the transmission of temperature data to a centralized 
location where measurements from other sensors are also available.  Ambient temperature, oil 
temperature, winding temperature and the load are correlated.  Recent researches using 3D numerical 
simulations and imbedded fiber optics in transformer windings indicate that the fluid flow occurring in 
the winding is an extremely complex phenomenon to describe by simple equations.   
 
This paper presents a machine learning (ML) approach that can be used to monitor cooling system 
performance.  This approach is compared with standard loading guide equations used to calculate the 
top-oil temperature as a function of ambient temperature and load.  A deviation from normal operation 
has been created by manually operating the cooling stages to demonstrate the capacity of the model to 
detect abnormal behavior.   
 
2. LOADING GUIDE DYNAMIC THERMAL MODELS AND THEIR LIMITATIONS 
 
A detailed review of state-of-the-art dynamic thermal models can be found in [1]. The applicability of  
IEC and IEEE loading guides [2, 3] for power transformers is limited to ambient temperature above 
0°C because the thermal model does not account for variations in the oil viscosity and winding 
resistance [4].  In other words, in the loading guide models, the ultimate temperature rise of oil and 
winding is independent of the ambient temperature.  Recent developments in transformer dynamic 
thermal modelling concentrate on including these two parameters and on better describing the thermal 
overshoot phenomenon associated with the local convective heat transfer, which depends, among other 
factors, on the distribution of oil flow in the cooling channels.  The direct modelling of thermal 
overshoot can help reproduce more adequately the transient temperature obtained after a step-load 
increase that can happen for instance when a parallel transformer is removed from service [5].  
Authors in [6, 7] have developed metrics and compared various models with data measured on two 
transformers, one with forced oil circulation and the other with natural oil convection. They conclude 
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that the most promising models should be further investigated using larger data sets.  Authors in [8, 9] 
created an improved model that was tested and validated on one transformer with forced oil 
circulation. The model was tested in summer and winter conditions with good accuracy even when 
keeping the same ultimate oil temperature rise.   
 
A three-phase transformer (in La Suète substation located in Québec City) rated 66 MVA, 
225/26.4 kV with natural oil convection and air flow through radiators (ONAF) was continuously 
monitored to improve our knowledge of thermal behavior. Measurements of ambient temperature, load 
and oil temperature (top and bottom), as well as inside the windings using fiber optic probes, were 
taken every minute for more than three years. Table 1 summarizes the data when the transformer was 
operating at rated load, with all cooling fans in operation, at ambient temperatures varying from -29 °C 
in January to +23 °C in July. 
 
When the bottom oil temperature falls below 0°C, the temperature difference between top and bottom 
oil increases significantly, thus indicating a lower oil flow rate in the windings that can be explained 
by an exponential increase of the oil viscosity [10].  The formulation in [10] includes the oil viscosity, 
but it is based on the top-oil temperature that is much higher than 0°C even at -29°C ambient, thus 
creating a systematic error of more than 20°C. This model could possibly be improved by using the 
bottom oil temperature as a reference for the oil viscosity calculation.  However, the bottom oil 
temperature is usually not measured in normal operation, and the heat run test data does not always 
integrate this information for older transformers.   
 
In summary, research in this field is ongoing.  A new CIGRE Working Group (WG A2.60) was 
created in 2019 to collect existing experience and make recommendations for further improvements. 
 

Table 1: Comparison of measurement and calculation for rated load operating condition of a 66 MVA 
transformer with natural oil convection 

 Measurements from transformer in service at 
rated load 

Loading 
guide 

models 

Month θamb (°C) θto (°C) θbo (°C)* 𝜽𝜽to − 𝜽𝜽amb (°C) 
∆θto,rated 

(°C) 
January -29.0 45.2 -15.5 74.2 

50.2 
March -3.7 52.1 13.3 55.8 
April 9.7 65.0 29.8 55.3 

September 15.6 70.3 35.5 54.7 
July 23.0 74.1 41.4 51.1 

θamb is the ambient temperature 
θto is the top-oil temperature 
θbo is the bottom oil temperature 
∆θto,rated is the top-oil temperature rise over ambient at rated load 

  
3. THERMAL MODELLING THROUGH MACHINE LEARNING APPROACHES 
 
3.1 Literature overview 
 
Dynamic thermal models limitations and the increased interest in machine learning (ML) approaches 
lead many authors to propose fit-for-purpose thermal prediction models, such as artificial neural 
networks (ANN) [11-14], thermal models with error correction via ANN [15], thermal models with 
parameter optimization via genetic algorithms (GA) and particle swarm optimization (PSO) [16], 
adaptive network-based fuzzy inference systems (ANFIS) [17], evolving Gaussian fuzzy systems [18], 
neuro-fuzzy systems [19], genetic programming [20] and ensembles of quantile regression models 
[21].   
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In our study, different models have been designed and tested, including random forests (RF) [22], 
feedforward multilayer perceptron (MLP) [23], support vector regression (SVR) [24], ANFIS, and 
non-linear autoregressive exogenous neural networks (NARX) [25].  These approaches are well 
known in the literature and have their own strengths and weaknesses. Our experimental results show 
that the NARX method generates the most accurate predictions to solve this problem.  The NARX 
model is explained in further detail in Section 3.2. The following describes briefly the other tested 
approaches. 
 

• Schematically, RF are an ensemble of recursive trees. Each tree is generated from a 
bootstrapped sample and a random subset of descriptors is used at the branching of each node 
in the tree. The approach creates many trees by repeatedly resampling training data and 
averaging differences through voting [22]. 

 
• An MLP is a three-layer neural network (input, hidden, output) composed of fully connected 

neurons. Each neuron performs a weighted sum of its inputs and passes the results through an 
activation function. Simple neural networks like MLP can be easily adapted to process time 
series through an input tapped-delay line, giving rise to the well-known time delay neural 
network (TDNN) [26]. 

 
• The SVR algorithm basically maps input data into an m-dimensional feature space using a 

kernel function. The kernel translates a nonlinearly separable problem into a feature space, 
which is linearly separable by a hyperplane. The SVR defines a ℇ loss function that ignores 
the errors situated within a certain distance of the true value. 

 
• ANFIS are a class of adaptive networks that incorporate both neural networks and fuzzy logic 

principles. This approach is essentially a rule-based fuzzy logic model whose rules are 
developed during the training process of the model. The training process is data-based, in 
other words, ANFIS constructs a fuzzy inference system whose membership function 
parameters are derived from the training examples.  

 
3.2 Description of the selected approach 
 
A NARX is a type of recurrent neural network in which the output of a given time step depends on 
both exogenous inputs and outputs of the preceding time steps. The dynamic behavior of a NARX can 
be expressed as: 
 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡 − 1), … ,𝑦𝑦�𝑡𝑡 − 𝑛𝑛𝑦𝑦�, 𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1), … , 𝑥𝑥(𝑡𝑡 − 𝑛𝑛𝑥𝑥)) (1) 
 
where  𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) are the input and the output at time step 𝑡𝑡, 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 are user-defined delays for 
the input and the output, and 𝑓𝑓(.) is a non-linear function. 𝑓𝑓(. ) is generally modelled as a feedforward 
neural network. NARX are formalized in [25] and used for prediction in a wide range of domains on 
systems with non-linear dynamic behavior, such as heat exchangers, wastewater treatment plants, 
catalytic reforming systems in a petroleum refinery and time series prediction.  However, to the best of 
our knowledge, this is the first time NARX have been used to predict transformer top-oil temperature 
validated with many units in real operation for several years. 
 
NARX inputs are the ambient temperature and the electrical load. A cross-correlation analysis shows 
that there is a non-linear relationship between these variables and the top-oil temperature. This 
indicates that these variables may be good predictors because they add new information to the model. 
The output is the top-oil temperature, which is compared to the top-oil temperature measurement used 
for controlling the cooling system.  
 
A drop in performance of the cooling system may be due, for instance, to failure of a fan or pollution 
on the radiator fins. In this case, the measured temperature will be higher than the temperature 
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predicted by the model. Then, a warning is sent to the maintenance personnel, and corrective actions 
are carried out before a high temperature alarm is sent to the network operators.  
 
The cooling stage information is not necessary for NARX models: comparison experiments have 
demonstrated that adding this information as input to a NARX model has no significant impact on its 
performance. This may be due to the correlation between the cooling stages and NARX inputs: 
cooling stages depend on the winding temperature, which is directly correlated with the ambient 
temperature and the load. 
 
Time steps are defined as five-minute periods. The feedback delay 𝑛𝑛y corresponds to the highest auto-
correlation value for the top-oil temperature signal. The input delay 𝑛𝑛x is calculated as the maximum 
of input signal time delays, where each input signal time delay corresponds to the highest cross-
correlation value with the top-oil temperature signal. 𝑓𝑓(. ) is represented as a feedforward neural 
network; it has been calibrated to one hidden layer of 10 neurons.  
 
NARX has been implemented in MATLAB with the Neural Network Toolbox [27] (see Figure 2).  
The chosen performance function is the mean-squared error. A model has been trained for each 
transformer on one year of historical data with the Levenberg-Marquardt algorithm [28] during 1 000 
iterations. 
 

 
 

Figure 2: Schema of NARX for a transformer with 𝒏𝒏x = 𝟗𝟗𝟗𝟗  and 𝒏𝒏y = 𝟏𝟏𝟏𝟏 (figure taken from MATLAB) 

4. FIELD EXPERIMENTS 
 
4.1 Training data selection, cleaning and preparation  
 
As discussed in Section 2, thermal performance of transformers with natural oil convection is strongly 
influenced by the oil viscosity and its dependence with temperature.  A suitable training period should 
then include all four seasons.  During training, the cooling system is assumed to be in good condition.  
If the training is carried out while the cooling system is deteriorated and maintenance is performed 
after training, the measured temperature would probably become lower than the predicted temperature. 
In this case, a new training should be initiated. 
 
Before training the NARX, data cleaning and preparation must be performed.  The measured data 
samples are not sent simultaneously.  They are stored using an exception technique, i.e., they are 
stored only if the value has changed more than a predetermined threshold (also called dead band).  A 
simple linear interpolation between registered samples is made to feed the model with data having a 
fixed 5-minute time step. Communication or sensor issues may interrupt the data flow to the 
centralized server so interpolation is stopped when the time between two consecutive measurement 
samples exceeds a predetermined threshold.  The same interpretation rules apply when the model is 
used in monitoring mode.  Inconsistent data that may be transmitted during testing of the sensors or 
bad data (due to noise or some other unknown) are removed from the training data set.   
 
Considering these elements, it was possible to apply training on 54 transformers, and a total of 
140 transformer-years of good monitoring data were available when this paper was prepared. 
Transformer cooling uses natural and forced oil flow in windings with natural or forced-air circulation 
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through radiators.  The ratings of the transformers vary from 22.5 to 450 MVA and from 120 to 
315 kV. 
 
4.2 Performance evaluation 
 
A good way to evaluate the performance of NARX prediction is to plot the sorted absolute error as a 
function of normalized time. Hence, it is possible to compare data from transformers with different 
durations of historical data, as shown in Figure 3.  Figure 4 illustrates the 90th percentile error for each 
transformer as a function of the historical data duration.  It can be seen that for 49 transformers out of 
54, the error is below 1°C for 90% of the data samples. 
 
NARX performance is similarly good at all temperatures and load conditions.  Figure 5 shows the 
sorted errors for four transformers in La Suète substation, with data clustered depending on ambient 
temperature and load. This demonstrates that NARX performance is not influenced by these 
parameters. Moreover, the transformers were operated in various cooling stage conditions, and they 
showed no influence on estimation accuracy. 
 
Figure 6 and 7 show the comparison between the developed NARX model and the model from Swift 
[8] with constant rated temperature rise (corresponding to the maximum cooling stage rating), which is 
very similar to the loading guide top-oil models [2, 3].  The graphs show the number of running fans, 
the load (with different profiles in summer and winter) and the ambient temperature.  The NARX 
model estimation is essentially superposed with the measured top-oil temperature.  The loading guide 
model does not consider the number of fans running and assumes that all fans are running at all times. 
In order to assess its performance, some areas are identified when all the fans are running.  It can be 
noted that in summer, the loading guide model performs better, however not as well as the NARX 
model.  In winter, the loading guide model deviation is increased due to the effect of increased oil 
viscosity.  This clearly shows that using a loading guide dynamic model that does not correctly 
account for the low ambient temperature behavior can produce a false alarm regarding cooling system 
performance. 
 
The NARX model has shown significantly reduced performance after a transformer step-load change 
or when the input data (ambient temperature or load) is contaminated with noise, as shown in Figure 8 
and 9. In these cases, the NARX estimation becomes unstable and diverges from the normal value for 
a duration that can last a few hours in the case of a step-load change or longer if the deviation is 
caused by noisy input values.  Since the deviation is significantly different from the normal behavior, 
it cannot be misinterpreted as a cooling system failure. It is then possible to post-process the data to 
eliminate these deviations from the analysis.   
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Figure 3: Sorted absolute error for 54 transformers 
representing 140 transformer-years of data 

Figure 4: Error at 90% percentile for each 
transformer as a function of duration of historical 

data (90% of the data has lower error) 

 
Figure 5: Sorted absolute error for four transformers in La Suète substation clustered as a function of 

ambient temperature and load 
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Figure 6: Comparison of loading guide and NARX estimations for a 66 MVA transformer operated in 
summer

 

Figure 7: Comparison of loading guide and NARX estimations for a 66 MVA transformer operated in 
winter 
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Figure 8: Step-load changes leading to NARX estimation instability 

 

 

 

 
 

Figure 9: Noisy ambient temperature measurements leading to NARX estimation instability 

 
5. FAILURE SIMULATION: MANUAL CHANGE OF COOLING CONDITION 
 
A simple way to detect a failure of the cooling system could be based on the daily average error on 
estimated top-oil temperature.  If the top-oil temperature is estimated accurately, this error will be low 
during normal operation of the transformer.  In order to induce a variation of normal cooling system 
behavior, the fans of a transformer were manually activated for some weeks.  The top-oil temperature 
was then lower than in normal operation, as shown in Figure 10.  As expected, it is observed that the 
NARX model is able to capture this abnormal deviation.  Indeed, the estimated top-oil temperature is 
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consistently higher than the measured temperature while the fans are manually operated.  Improved 
deviation algorithms can be applied using moving average or more advanced statistical analysis of the 
deviations, as proposed in [29]. 

 

 
 

Figure 10: Measurement and NARX estimation during manual operation of the fans 

6. CONCLUSION 
 
A dynamic thermal model can be used to monitor transformer cooling performance. The model must 
be able to predict the temperature in a wide range of ambient temperatures and loads. This is still a 
challenge for models based on the physics of thermal phenomena.  
 
To tackle this complex problem, the machine learning approach has been applied more frequently in 
recent years. The NARX model presented in this study demonstrates an excellent performance on 
many transformers with natural and forced oil circulation in the windings and the cooling system.  The 
model showed similar performance in summer and winter conditions and with load varying from 0 to 
1.4 pu.  However, the NARX model showed inadequate performance for sudden load changes because 
the training is based mostly on slow load fluctuations.  Similar deviations were observed in the case of 
noisy input signals.  These abnormal estimations were identified and removed with post-processing of 
the output.  As the purpose of the model is to detect cooling performance changes, these isolated 
events should not diminish the potential of the proposed approach. 
 
Future work will concentrate on on-line training that would be automatically initiated when sufficient 
input data is available. 
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